

(AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583 QUESTION BANK (DESCRIPTIVE)

Subject with Code : DIGITAL IMAGE PROCESSING (19EC0437)

Course & Branch: B.Tech. – ECE Year & Sem: IV-B.Tech.& I-Sem. Regulation: R19

r				
1	a)	State the purpose of the image processing. List out the fundamental steps in digital image processing which can be applied to images.	[L1][CO1]	[6M]
	b)	Define image processing. Illustrate example fields of its usage.	[L2][CO1]	[6M]
2	a)	Discuss the components of digital image processing along with the suitable block diagram.	[L2][CO1]	[6M]
	b)	List out the applications of digital image processing.	[L1][CO1]	[6M]
3	a)	Discuss the three principal sensor arrangements used to transform illumination energy into digital images.	[L2][CO1]	[6M]
	b)	Explain about the Simple Image Formation Model.	[L2][CO1]	[6M]
4	a)	Discuss the method of image sensing and acquisition along with suitable diagrams.	[L2][CO1]	[8M]
	b)	Calculate the number of bits required to store a digitized image if image sizes are 8×8 , 32×32 for 8-bit pixel depth.	[L3][CO1]	[4M]
5	a)	Explain about image sampling and quantization process with proper steps.	[L2][CO1]	[6M]
	b)	Discuss the method for representation of a digital image.	[L2][CO1]	[6M]
6	a)	Explain the neighbours of a pixel with suitable example.	[L2][CO1]	[6M]
	b)	Illustrate about the adjacency, connectivity, regions and boundaries.	[L2][CO1]	[6M]
7	a)	Discuss about the distance measures of a pixel with suitable example.	[L2][CO1]	[6M]
	b)	Explain the following mathematical operations on digital images.i) Array versus Matrix operations ii) Linear versus Nonlinear Operations.	[L2][CO1]	[6M]
8	a)	Demonstrate the Arithmetic operations on digital images with relevant expressions.	[L2][CO1]	[6M]
	b)	List out the applications of image subtraction and image multiplication.	[L1][CO1]	[6M]
9	a)	Discuss the different types of spatial operations on digital images with relevant expressions.	[L2][CO1]	[6M]
	b)	Compute the array product and matrix product for the following two images and comment the result.	[L3][CO1]	[6M]
		$A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \& B = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$		

UNIT- I

COURSE CODE: 19EC0437

R19

10	a)	Demonstrate the set operation and logical operations in digital image	[L2][CO1]	[6M]
		processing along with suitable example.		
	b)	Compute the image addition, image subtraction and image	[L3][CO1]	[6M]
		multiplication operation for the following images.		
		$f(x,y) = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \& g(x,y) = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$		

UNIT-II

1 a)		Discuss the need of image transforms.	[L2][CO2]	[6M]	
	b)	Define 2D Orthogonal and Unitary transforms.	[L1][CO2]	[6M]	
2	a)	Discuss the properties of Unitary transforms.	[L2][CO2]	[6M]	
	b)	Define 1D and 2D – Discrete Fourier Transform with equations.	[L1][CO2]	[6M]	
3	a)	Prove the Separable property of 2D – Discrete Fourier Transform.	[L4][CO2]	[6M]	
	b)	Prove the Periodicity property of 2D – Discrete Fourier Transform.	[L4][CO2]	[6M]	
4	a)	Compute the basis function of $2D$ – Discrete Fourier Transform for $N = 4$.	[L3][CO2]	[6M]	
	b)	Compute 2D – Discrete Fourier Transform for the following image. $f(x, y) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$	[L3][CO2]	[6M]	
5 a) Define 2D – Discrete Cosine Transform with equation		Define 2D – Discrete Cosine Transform with equations.	[L1][CO2]		
	b)	Compute the Discrete Cosine Transform basis matrix for $N = 4$.	[L3][CO2]	[8M]	
6	a)	Estimate the basis matrix of Walsh Transform for $N = 4$.		[6M]	
	b)	Evaluate Walsh transform for the given image $f(m,n) = \begin{bmatrix} 2 & 4 \\ 2 & 5 \end{bmatrix}$		[6M]	
7	a)	Compute the image basis function of Hadamard Transform when $N = 4$.		[6M]	
	b)	Define Haar transform and give the algorithm and flowchart to compute Harr basis.	[L1][CO2]	[6M]	
8	a)	Compute the Harr basis for N=2.	[L3][CO2]	[6M]	
	b)	Compute Harr transform for the given image.	[L3][CO2]	[6M]	
		$f(m,n) = \begin{bmatrix} 4 & -1 \\ 2 & -3 \end{bmatrix}$			
9	a)	Define KL Transform and give its applications.	[L1][CO2]	[6M]	
L					

b)Apply the KL transform for the following image.[L3][CO2][6M] $f(m,n) = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$ 10a)Define Discrete Wavelet Transform.[L1][CO2][4M]b)Compare different Image Transforms.[L2][CO2][8M]

1	a)	Define image enhancement and point operations in image enhancement?	[L1][CO3]	[6M]
	b)	Illustrate the contrast stretching in image enhancement with suitable example.	[L2][CO3]	[6M]
2	a)	Define negative image transformation and illustrate with suitable example.	[L1][CO3]	[6M]
	b)	Explain the Intensity level slicing operation and bit extraction operation in image enhancement with suitable example.	[L2][CO3]	[6M]
3	a)	Define histogram and draw the histogram four basic image types.	[L1][CO3]	[6M]
	b)	Explain the procedure for histogram process and uses of histogram.	[L2][CO3]	[6M]
4	a)	Discuss the mechanics of spatial filtering with suitable diagram.	[L2][CO3]	[6M]
	b)	Illustrate the smoothing spatial filters along with the required expressions.	[L2][CO3]	[6M]
5	a)	Illustrate the sharpening spatial filters along with the required expressions.	[L2][CO3]	[6M]
	b)	Define the image enhancement in frequency domain and give the expression.	[L1][CO3]	[6M]
6	a)	Discuss the smoothing filters in frequency domain along with the required expressions.	[L2][CO3]	[6M]
	b)	Explain the sharpening filters in frequency domain along with the required expressions.	[L2][CO3]	[6M]
7	a)	Define the following terms: Saturation, Hue and Brightness.	[L1][CO3]	[6M]
	b)	Draw the CIE chromaticity diagram and mention its significance.	[L1][CO3]	[6M]
8	a)	Define the following terms: Radiance, Luminance and Brightness.	[L1][CO3]	[6M]
	b)	Give the importance of the Color Models and explain the RGB models.	[L1][CO3]	[6M]
9	a)	Explain the method of converting colours from RGB to HSI.	[L2][CO3]	[6M]
	b)	Illustrate the method of converting colours from HSI to RGB.	[L2][CO3]	[6M]
10	a)	Draw the functional block diagram of pseudo colour processing and explain each block.	[L1][CO3]	[6M]
	b)	Illustrate the method of the smoothing and sharpening of color images.	[L2][CO3]	[6M]

UNIT-III

		UNIT-IV		
1	a)	Draw the degradation/restoration model in image processing and describe the each part presented on it.		[6M]
	b)	Explain the Rayleigh noise and Gamma noise with proper PDF expression.	[L1][CO4]	[6M]
2	a)	Explain restoration in the presence of noise only using Mean filters.	[L1][CO4]	[6M]
	b)	Explain the Rayleigh noise and Erlang noise with proper PDF expression.	[L2][CO4]	[6M]
3	a)	a) Give the importance of exponential noise, uniform noise and impulse noise along with PDF expression.		[6M]
	b)	Differentiate the Image Enhancement and Image Restoration.	[L4][CO4]	[6M]
4	a)	a) Explain the method of inverse filtering for image restoration.		[6M]
	b)	Give the advantages and disadvantages of the inverse filtering.	[L1][CO4]	[6M]
5	a)	a) Explain the method of the Least mean square filters for image restoration.		[6M]
	b)	Discuss the method of constrained least square restoration for image restoration.	[L2][CO4]	[6M]
6	a)	Give the importance of image segmentation in image processing.	[L1][CO5]	[6M]
	b)	Explain the Region based Approach for image segmentation.	[L2][CO5]	[6M]
7	a)	Illustrate the Clustering techniques for image segmentation with example.	[L2][CO5]	[6M]
	b)	Discuss the Edge detection with the help of the following operators: i) Gradient ii) Roberts iii) Prewitt iv) Sobel.	[L2][CO5]	[6M]
8	a)			[6M]
	b)	Discuss the concept of Laplacian of Gaussian (LoG) operator for edge detection.	[L2][CO5]	[6M]
9	a)	Discuss the basics of the intensity thresholding.	[L2][CO5]	[6M]
	b)	Illustrate the method of Canny edge detector for edge detection.	[L2][CO5]	[6M]
10	a)	Define Hough transform with proper equations.	[L1][CO5]	[6M]
	b)	Explain the concept of Watershed transform for image segmentation.	[L2][CO5]	[6M]

UNIT-IV

UNIT- V

1	a)	Define the following terms :		[6M]
		Data, Information, Data Redundancy, Data compression and		
		Compression Ratio.		
	b)	Explain the Coding Redundancy with suitable example.	[L2][CO6]	[6M]
2	a)	Explain the Spatial and Temporal Redundancy with suitable example.	[L2][CO6]	[6M]
	b)	Evaluate Average Length, Compression and Coding Redundancy if	[L4][CO6]	[6M]

		the computer generated image h						
		table. If a natural 8-bit code intensities.						
		Intensities rk Probabilities pk						
		r ₈₇ =87		0.25				
		r ₁₂₈ =128		0.47				
		r ₁₈₆ =186		0.25				
		r ₂₅₆ =256		0.03				
		r_k for k≠87,128,186,256		0				
3	a)	Discuss the Objective fidelity of	riteria and s	ubiective	e fidelity	criteria	[L2][CO6]	[6M]
		with suitable example.		J				
	b)	Compare zero-memory source as	nd Markov or	finite m	emory so	urce.	[L2][CO6]	[6M]
4	a)	Differentiate lossy compressio	n process ar	nd lossle	ess comp	ression	[L4][CO6]	[6M]
	•	process.				<u> </u>		
	b)	Explain the functional block dia system with neat sketch.	gram of a ge	neral im	age comp	ression	[L2][CO6]	[6M]
5	a)	Differentiate lossy compressio process.	n process ar	nd lossle	ess comp	ression	[L2][CO6]	[6M]
	b)	Explain the functional block dia	gram of a ge	neral im	age comn	ression	[L5][CO6]	[6M]
	0)	system with neat sketch.	grain or a ge			10351011		
6	a)	Explain the procedure for Huf	fman coding	for ima	age comp	ression	[L3][CO6]	[6M]
	b)	method. Justify Huffman coding is a unic	uely decodat	le codin	g.		[L4][CO6]	[6M]
7	a)	Apply Huffman coding for the fo	ollowing prob	abilities			[L2][CO6]	[6M]
	u)	Symbol a ₁ a ₂		a ₅	а ₆			
		$\begin{array}{c c c c c c } Probabilit & 0. \\ v & 1 & 0.4 \end{array}$	$\begin{vmatrix} 0.0\\6 \end{vmatrix}$ 0.1	0.04	0.3			
		Estimate Compression ratio and	Redundancy.					
	b)	Why Huffman coding is called a					[L2][CO6]	[6M]
8	a)	Explain the procedure for Arithm	netic coding v	with suita	able exam	ple.	[L2][CO6]	[6M]
	b)	Summarize the procedure of Bit	plane coding	with sui	table exar	nple.	[L2][CO6]	[6M]
9	a)	Explain the Run length coding w		[L2][CO6]	[6M]			
	b)	Explain the functional block diag	nique	[L2][CO6]	[6M]			
10								
10	a)	Compare the adaptive transform coding.	n coding and	non- ad	aptive tra	nstorm	[L2][CO6]	[6M]
	b)	Discuss the different Image Forr	nats and com	pression	standards		[L2][CO6]	[6M]
			•					

PREPARED BY Dr. D. Regan, G. Sandhya Kumari